RoBoOTICS

BounceBOT

PiCar-X Kicks A Ball

TeEAM LOST & FOUND

Jelmer Prins
s2773058

Julius Hendrix
s1825216

Julia Huber
s3291987

Ernest Vanmosuinck
$3210359

Daniel Siegmund
52999404

Taught by
Erwin M. BAKKER

Teaching Assistant:
Hainan YU

May 4, 2023



Abstract

Interaction with robots is no longer a rarity. Often the main purpose for Hu-
man Robot Interaction is simply entertainment, which can be a useful tool to
promote a healthy lifestyle, for example by encouraging stress relief and social-
ization. The robot presented here was developed for entertainment by applying
playfulness. The so-called BounceBOT is a modified PiCar-X that plays ball with
the interacting person. The BounceBOT detects a ball rolling in its direction,
intercepts the ball by moving in front of its trajectory and pushing the ball back
to a marker. The ball is detected with a camera and a simple color-based de-
tection algorithm using OpenCV. The BounceBOT intercepts the ball by driving
forwards and backwards, trying to keep the ball horizontally centered in the cam-
era frame. The ball is pushed using a solenoid-powered, extending plate which
is attached to a servo. This servo is directed towards an ArUco marker, which is
also detected by the camera.

The BounceBOT is able to consistently position itself in front of a brightly col-
ored rolling ball and push it towards an ArUco marker. Limitations of the robot’s
performance include the narrow field-of-view of the PiCar-X camera module, tim-
ing of the push due to the short stroke of the solenoid and varying ball speeds,
and deviation from a straight path when moving due to the construction of the
PiCar-X.

Contents

1 Introduction

2 Design

3 Implementation

3.1 Ball Detection . . . . . .. ..
3.2 Target Detection . . . . . . ... . .o
3.3 Decision Making . . . . . . ... .o

Results
Discussion

Conclusion



1 Introduction

Human-robot interaction is playing an increasingly important role, and in the process,
societal demands and expectations for human-interactive robots have increased in recent
years [1]. One of the most important values for participants’ attitudes toward robots is
entertainment and thus playfulness [2]. Perceived playfulness is described as ”the feeling
of curiosity and pleasure” and therefore associated with more relaxation [3]. This report
presents a modified PiCar-X robot whose main function is to play a ball game with an
interacting human. It is able to detect a ball rolling in its direction, intercept the ball
by moving in front of its trajectory and push the ball back to a marker.

First, the design and construction of the BounceBOT is discussed in Section 2. Sec-
ond, the implementation of the ball- and marker detection algorithms, as well as the
decision making algorithm is described in Section 3. The performance of the Bounce-
BOT is presented in Section 4, which are then discussed in Section 5. Finally, some
conclusions are drawn in Section 6.

2 Design

A concept schematic of the BounceBOT can be seen in Figure la. It shows a movable
base driven by wheels, on top of which sits a rotating turret. On this turret, a cam-
era and a solenoid-powered scoop are mounted. In operation, the robot would move
forwards or backwards to position itself in front of a ball rolling towards it, rotate the
turret to aim at a target and kick the ball in the target’s direction.

The PiCar-X robot[4] is used as the basis for the construction of the BounceBOT.
The relevant features it offers are: a Raspberry Pi Camera Module V1 mounted on
a 2-axis movable head, rear-wheel drive, and a Raspberry Pi 4 with custom HAT to
interface with the hardware. The original design had to be adapted to work with the
PiCar-X. The most stable place to mount the turret to is on top of the Raspberry Pi
and HAT. However, because the solenoid used to actuate the scoop has a very small
reach, it was decided to move the servo and solenoid from the center of the robot to the
left; this way the scoop does not run into the rear wheels of the robot when it turns.
The servo and solenoid, which together with the scoop form the turret, are mounted
on an extending piece of wood which had holes drilled to interface with the screw holes
that hold the Raspberry Pi and HAT. It was also decided to mount the camera module
on top of the wooden extension. This was done because the camera does not need to

Solenoid

Camera —»

j‘ «— Scoop
Turret
Servo ———» | |
Base Ball
Wheels —»

(a) First schematic drawing of the BouceBOT.

Figure 1: The design of BounceBOT



rotate with the turret for the robot to function, making for easier construction. The
solenoid is powered directly by the batteries of the robot, and is triggered by a relay
controlled by the Raspberry Pi. The scoop was printed with a 3D printer and has slight
rounding on the edges in order to deflect the ball to the center of the scoop in case the
turret is not perfectly aligned with the trajectory of the ball. To give the robot some
character, the cup contains the logo of the BounceBOT, painted in yellow and blue.

3 Implementation

3.1 Ball Detection

For the ball detection a simple color-based detection using OpenCV was chosen. This
worked well for our situation since we were able to choose the ball our self and thus were
able to use colors that were not otherwise present in the environment. For a previous
assignment we worked with the same robot with a MobileNetV3 implementation for
COCO and we knew this would result in a worse framerate and possibly some false
positives or false negatives. This further incentivised us to use a more simple color
detection.

The color detection was performed by taking the frame from the camera and turning
it into a HSV format, as this color format is able to detect different color more easily.
We then create a mask to filter out the color we want to detect using two color bounds.
Those colors are used to see if any section of the frame falls between those bounds.
Once all the colors have been filtered out by the color mask, we can get all the bounding
boxes in the image using function findCountours. We then simply assume the largest
bounding box to be our ball, thus giving us its size and position in the frame. This is
required as there can still be noise in the image detection, especially since color is so
easily affected by light and camera perception.

The lower and upper bounds were determined using the HSV colormap shown in
Figure 2. Our implementation tested 8 different colors (one for each of the balls we
possessed); red, purple, pink, blue, green and yellow, with pink being the most efficient
detection. We realized that the color detection was very sensitive not only to light,
but also the environment, which made it hard to key out certain colors. In a perfect

017/11/28 23:08:04 CST

5o (1) H=S (H: 0-180, 5: 0-255, Vi 255)

100

0 30 40 59
(H: 0-180, S: 255,

Figure 2: HSV colormap. OpenCV caps the saturation to 180 (normally 360).



(a) HSV Transformation (b) Color mask on frame (c) Ball bounding box

Figure 3: Frames at each step of the color detection procedure

environment (e.g.: uni-color/white background), the color detection would find the ball
more easily. The different steps of the color detection can be seen in Figure 3.

3.2 Target Detection

The target for the BounceBOT to aim at is an ArUco marker [5]; an easy to detect
binary fiducial square. More specifically, the marker chosen for the demonstration of
the BounceBOT is the 4 x 4 marker corresponding to the number 6. This marker was
chosen because it is fast to detect, and easy to estimate the pose of the ArUco marker
with respect to the camera. ArUco detection and pose estimation is easily achieved
using OpenCV, and only required the calibration of the camera module using a series
of images of a chessboard pattern taken with the camera module.

Once the pose of the ArUco marker is estimated, the horizontal offset of the center of
the marker from the center of the camera frame, together with the estimated distance is
used to calculate the angle that points the turret towards the ArUco marker. This is so
easily achieved because the camera module is mounted directly on top of the rotation
axis of the turret. A screenshot of the BounceBOT aiming at the ArUco marker can
be seen in Figure 4

Figure 4: BounceBOT camera catching focus point



3.3 Decision Making

Based on the position of the ball in the image-space we had to make a decision on what
the robot should do. Because we were able to mount the camera in-line with the cup
this was a fairly simple task. If the ball was more to the left of the image we had to
move to the left, if the ball was more to the right we had to move to the right. We did
add some simple offsets and a "deadzone” in the middle of the image for calibration
and a slightly more smooth experience.

The decision for when to fire the solenoid also came from the position of the ball
in the image. When the ball reached a certain threshold from the bottom of the image
we send a fire command after a certain set delay. This threshold and fire delay were
calibrated to work as well as possible in most situations but for optimal performance
they should have been dependent on the speed of the ball but we were unable to measure
this.

4 Results

It is hard to quantify the quality of our final robot design since we are unable to get a
consistent test environment and since we don’t have anything to compare to. The best
way to see the result is in the video we included with the report. A screenshot of the
BounceBOT in action can be seen in Figure 5.

In general, the robot is able to consistently position itself in the trajectory of the
ball, with the exception of the case when the ball moves outside of the field-of-view of
the camera module. The turret is consistently aimed at the ArUco marker, as long as
it also is withing the field-of-view of the camera module. The robot has some difficulty
with the timing of the push, because this is dependent on the velocity of the ball.

Figure 5: BounceBOT kicking ball with cup



5 Discussion

Overall there are many things we could improve on. These are mostly hardware limi-
tations but would then of course also be paired with software improvements.

The simplest upgrade would be a camera with a wider angle lens. This would allow
the robot to see more to the sides meaning it would be able to intercept balls that
follow more extreme trajectories. This would however change the angular size of the
ball quite drastically based on position so we would have to find a balance between not
too narrow and not too wide. The current camera however was clearly way too narrow.

Another solution that would be interesting to investigate would be the addition of
another camera on the robot, perhaps positioned on the other side. Adding another
camera feed would give the ability for "accurate” depth calculation, providing better
calculation for triggering the solenoid. This feature could however encounter processing
limitations with the current Raspberry Pi installed on the PiCar-X.

To more consistently push the ball with the correct timing, velocity estimation could
be done in the software using the position of the ball in subsequent camera frames. This
is however not straight-forward, as the position of the ball in the camera frame is not
only dependent on its velocity, but also on the velocity of the robot, which cannot
directly be measured.

To further improve the push of the ball, a solenoid with a longer reach could be
used. An alternative is a gearing system which would increase the reach of the current
solenoid. With more range, the accurate timing of the push becomes less critical to
successfully push the ball. It may also allow the ball to be pushed further, as it will
accelerate more during a longer push.

Currently, we have found that the PiCar-X is not very precise when it comes to
driving and turning, mostly caused by slipping from the tyres and large tolerances in
the steering construction of the front wheels. A solution would be to mount the system
on a rail where the robot would only move only that axis. This would constrain the
movement of the robot, and also allow for larger acceleration of the robot.

6 Conclusion

The BounceBOT is able to consistently position itself in front of a brightly colored
rolling ball and push it towards an ArUco marker. The main limitation for the robot is
the narrow field-of-view of the PiCar-X camera module. The short stroke of the solenoid
and varying ball speeds make it difficult for the robot to time the push correctly. It also
deviates from a straight path when moving due to the construction of the PiCar-X.



References

1]

[7]
8]
[9]

N. Yamaguchi and H. Mizoguchi, “Robot vision to recognize both face and ob-
ject for human-robot ball playing,” in Proceedings 2003 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM 2003), vol. 2, pp. 999-1004,
[EEE, 2003.

A. Chowdhury, “Exploring the user needs and experience of the university guidance
robot,” Master’s thesis, Tampere University, 2019.

Y. Song, M. Zhang, J. Hu, and X. Cao, “Dancing with service robots: The impacts
of employee-robot collaboration on hotel employees’ job crafting,” International
Journal of Hospitality Management, vol. 103, p. 103220, 2022.

Sunfounder, “Play with python.” https://docs.sunfounder.com/projects/
picar-x/en/latest/python/play_with_python.html.

OpenCV, “Aruco marker detection.” https://docs.opencv.org/4.x/d9/d6d/
tutorial_table_of_content_aruco.html.

Sunfounder, “Download and run the code.” https://docs.sunfounder.com/
projects/picar-x/en/latest/python/python_start/download_and_run_
code.html.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
“Numpy.” https://numpy.org/.

P. Community, “Pygame.” https://www.pygame.org/news.


https://docs.sunfounder.com/projects/picar-x/en/latest/python/play_with_python.html
https://docs.sunfounder.com/projects/picar-x/en/latest/python/play_with_python.html
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html
https://docs.opencv.org/4.x/d9/d6d/tutorial_table_of_content_aruco.html
https://docs.sunfounder.com/projects/picar-x/en/latest/python/python_start/download_and_run_code.html
https://docs.sunfounder.com/projects/picar-x/en/latest/python/python_start/download_and_run_code.html
https://docs.sunfounder.com/projects/picar-x/en/latest/python/python_start/download_and_run_code.html
https://numpy.org/
https://www.pygame.org/news

Appendix A: Links

e Github repository: https://github.com/Phobos97/RoboticsObjectDetection

e Demo video: https://drive.google.com/file/d/1hH8Ehn9sVmJ9oHzR1NyiAWUUBIOkXqkb/
view?usp=sharing

Appendix B: Build and run instructions

The algorithms implemented in this are solely dependent on the standard packages
required by and provided by SunFounder’s Picar-X. Installation instructions for the
Picar-X setup can be found on Sunfounder’s website [6].

Notable packages are OpenCV [7], NumPy [8] and Pygame [9] (for manual control).

To run the main script with a red ball, simply use the following command:
python Main/bounce.py --rendering --ball_color red

The command posses two parameters. If you would like a live camera feed of the
robot camera, use --rendering, but we do not advise using rendering when actually
testing the robot, as it makes the object detection much slower. Additionally, you can
specify a different ball color using --ball_color "color", replacing ”color” which one
of the available options (blue/green/yellow/red/pink/purple).


https://github.com/Phobos97/RoboticsObjectDetection
https://drive.google.com/file/d/1hH8Ehn9sVmJ9oHzR1NyiAWUUBIOkXqkb/view?usp=sharing
https://drive.google.com/file/d/1hH8Ehn9sVmJ9oHzR1NyiAWUUBIOkXqkb/view?usp=sharing
https://docs.sunfounder.com/projects/picar-x/en/latest/python/python_start/download_and_run_code.html

	Introduction
	Design
	Implementation
	Ball Detection
	Target Detection
	Decision Making

	Results
	Discussion
	Conclusion

