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ABSTRACT
With the ever-expanding growth of social network analysis, the
development of efficient, accurate and scalable visualization algo-
rithms is a fascinating topic. In this research, we expand Jacomy et
al’s research [11] by benchmarking a total of five different visualiza-
tion algorithms; ForceAtlas2, ForceAtlas2 LinLog, OpenOrd, Yifan
Hu and Yifan Hu Proportional, all available on the Gephi frame-
work, on a set of new larger datasets, using the inverted Noack’s
normalizedendv atedge measure. We find that the performance of
ForceAtlas2 is not as prominent when evaluating larger networks,
and emit doubt as to the usability of Noack’s measure to correctly
benchmark visualization algorithms.
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1 INTRODUCTION
In this paper, we aim to study the continuous graph visualization
algorithm called ForceAtlas2, and analyse its performance on a vari-
ety of datasets, borrowing from the benchmark suite approached by
Jacomy et al [11]. We also wish to expand the benchmark performed
to include new algorithms; Yifan Hu Proportional and OpenOrd
[30]. Comparing with OpenOrd will also enable us to evaluate the
benchmarking measure used in the baseline paper on a different
type of algorithm.

2 PROBLEM STATEMENT
Gephi [2] is a network visualization program that includes network
spatialization as one of its core features, and one of its main visual-
ization algorithms is ForceAtlas2. ForceAtlas2 has been developed
as a comprehensive solution for visualizing networks. Jacomy et al

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SNACS ’22, Master CS, Fall 2022, Leiden, the Netherlands
© 2022 Copyright held by the owner/author(s).

[11] claim to not have made a theoretical breakthrough, but rather
an attempt to integrate many methodologies together such as the
Barnes Hut simulation, degree-dependent repulsive force, and local
and global adaptive temperatures. In this paper, we compare the
performance of ForceAtlas2 which runs in a continuous homoge-
neously layout with other algorithms and expand the research on
larger real-world networks.

3 RELATEDWORK
Our research is using the work presented by Jacomy et al. [11]
as baseline for this paper. In their research, they compared their
implementation to three different algorithms; the LinLog variant
of ForceAtlas, the Yifan Hu algorithm [10] and the Fruchterman-
Reingold algorithm [7], showing that the improvements and per-
formance of ForceAtlas2 were quite noticeable over the other algo-
rithms already available on Gephi.
The ForceAtlas2 algorithm has since been used in loads of further re-
search for the visualization of complex networks. It is concentrated
on accuracy and being helpful for exploring real data, allowing for a
rigorous interpretation of the graph, for example in Social Network
Analysis, with the fewest biases possible, and decent readability
even if it is slow. Fruchterman-Reingold algorithm [7] mimics the
graph as a mass particle system. The nodes represent the mass
particles, while the edges represent the connections between the
particles. The algorithm attempts to reduce energy consumption.
It has become an industry standard, although it is still incredibly
slow.
We also acknowledged the existence of the GraphViz framework
[5], an open-source software developed in C that is also capable of
visualizing large networks. While faster due to its development in
the C language, the incorporation of this tool is out of scope for
this project, and will thus not be explored.

4 ALGORITHMS
4.1 ForceAtlas2
ForceAtlas2 is a force-directed architecture that spatializes a net-
work. While edges pull their nodes in like springs, nodes repel one
another like charged particles. These forces produce a movement
that eventually reaches equilibrium. The interpretation of the data
is anticipated to benefit from this final configuration. Each node
is specifically positioned in the force-directed drawing in relation
to the other nodes. Only the connections between the nodes deter-
mine how this process works. Nodes’ eventual properties are never
taken into consideration. There are problems with this approach.
Depending on the initial state, the outcome differs. The procedure
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could become stalled at a local minimum. The coordinates of each
point do not correspond to any particular variable, and it is non-
deterministic. It is impossible to read the outcome as a Cartesian
projection. A node’s location cannot be interpreted on its own;
instead, it must be compared to those of the other nodes. Despite
these drawbacks, one benefit of the approach is that it makes the
structure visible. Its fundamental function is to convert structural
proximities into visual proximities, which makes it easier to analyze
data, particularly data from social networks.

4.1.1 Energy Model
The attraction force and the repulsion force are the foundation of
every force-directed algorithm. The ’spring-electric’ [4] layout is
inspired from real life and uses repulsion formula of electrically
charged particles (𝐹𝑟 = 𝑘/𝑑2) and the attraction formula of springs
(𝐹𝑎 = −𝑘.𝑑) where d is the geometric distance between two nodes.
Going forward, Fruchterman and Rheingold [6] created an efficient
algoritm using custom forces: repulsion force (𝐹𝑟 = −𝑘2/𝑑) and
attraction force (𝐹𝑎 = 𝑑2/𝑘) with k adjusting the scaling of the
network.
The author Noack in this paper on Energy models for clustering
[32] explains the importance of distance in the spatialization of
graphs as the key distinction between force-directed algorithms.
The strength of the forces in physical systems depends on the prox-
imity of the interacting components: closer entities repel more
strongly than more distant ones and vice versa. Forces and distance
can interact in a linear, exponential, or logarithmic fashion. Noack
defines a layout’s energy model or "(attraction, repulsion)-model"
as the exponent multiplied by the distance in the equations used to
compute attraction and repulsion.
For example, as mentioned by Jacomy et al. [11], the model of the
spring-electric layout is (1, -2). The (attraction, repulsion)-model of
ForceAtlas (1, -1) falls somewhere between Noack’s LinLog (0, -1)
and Fruchterman and Rheingold’s method (2,-1).
Noack [34] states that “distances are less dependent on densities for
large, and less dependent on path lengths for small ”. The ratio of
actual edges to prospective edges is the "density." It indicates that
visual clusters signify structural densities when is low, i.e. when
the attraction force is less dependent on distance and the repulsion
force is more dependent on it. ForceAtlas2’s ability to display clus-
ters outperforms Fruchterman and Rheingold’s method but falls
short of LinLog.

A classical attraction force:
The attraction force 𝐹𝑎 . between two connected nodes n1 and n2 is
insignificant. It depends linearly on the distance d(n1, n2). This can
be represented as:

𝐹𝑎 (𝑛1, 𝑛2) = 𝑑 (𝑛1, 𝑛2) (1)

Repulsion by degree:
The goal is to bring weakly connected nodes closer together with
well-connected ones. Our idea is to reduce the repulsive effect be-
tween a highly linked node and a weakly connected node. As a
result, they will be closer to a balanced condition. The repulsion
force 𝐹𝑟 is proportional to the product of the degrees plus one (deg
+ 1) of the two nodes, n1 and n2.

The formula is represented as:

𝐹𝑟 (𝑛1, 𝑛2) = 𝑘𝑟
(𝑑𝑒𝑔(𝑛1) + 1) (𝑑𝑒𝑔(𝑛2) + 1)

𝑑 (𝑛1, 𝑛2)
(2)

The equation is similar to what Noack proposes in the paper [32],
with only only one change of (deg+1) instead of deg. This is sig-
nificant since it assures that even nodes with a degree of 0 have
some repulsion force. The authors believe that this feature has a
greater influence on the outcome and readability than the (attrac-
tion, repulsion)-model.

4.1.2 Settings
In this section, the paper discusses the parameters, modes and their
effects.We now go through the options shown to the user, what they
do, and how they affect the layout during Gephi implementation.
The majority of these options allow the user to influence node
location and sometimes the shape of the network. They may be
enabled while the layout is running, enabling the user to observe
how they affect spatialization.

• Linlog mode: The LinLog mode uses a logarithmic attrac-
tion force with the following formula:

𝐹𝑎 (𝑛1, 𝑛2) = 𝑙𝑜𝑔(1 + 𝑑 (𝑛1, 𝑛2)) (3)

The formula is different from Noack’s [33] because of the
added value 1 to the distance. When switching from normal
to LinLog mode, the scale value must be re-adjusted. The
energy model has a strong impact on the shape of the graph,
and the time of convergence.

• Gravity: Gravity is a popular enhancement of force-directed
designs. This force prevents unconnected nodes from dis-
persing. It draws nodes to the spatialization space’s cen-
tre. Its primary function is to compensate for repulsion for
nodes located far from the centre. In our situation, it must
be weighted similarly to repulsion. Force of gravity is repre-
sented as:

𝐹𝑔 (𝑛) = 𝑘𝑔 (𝑑𝑒𝑔(𝑛) + 1) (4)
where 𝑘𝑔 is set by the user. There is also a strong gravity
option that attracts nodes that are far distant from the centre
(this is the distance d(n)), but this force is so strong that it has
its drawbacks. It sometimes might lead to biased placement
of the nodes in the graph. However, its advantage is that the
output graph will be more compact.

𝐹 ‘𝑔 (𝑛) = 𝑘𝑔 (𝑑𝑒𝑔(𝑛) + 1)𝑑 (𝑛) (5)

• Scaling: We have two constants, attraction constant 𝑘𝑎 and
repulsion constant 𝑘𝑟 which adjust the attraction and repul-
sion forces respectively. These two constants play opposite
roles. Increasing the attraction constant 𝑘𝑎 reduces the size
of the graph whereas increasing the size of repulsion con-
stant 𝑘𝑟 expands the graph. However, in practical use, it is
preferable to have only one scaling parameter. In ForceAtlas2
there is no attraction constant 𝑘𝑎 . We use 𝑘𝑟 to scale the size
of the graph as required.

• Edge weight: In the case of weighted edges, the weight will
be taken into account when calculating the attraction force.
𝛿 is used to represent ’Edge weight influence. If 𝛿 is set to 0,
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the weights are ignored, and if 𝛿 is set to 1, the attraction is
proportional to the weight. Any values set above 1 emphasize
the weight effects.

• Prevent Overlapping: The repulsion is modified in this
mode such that the nodes do not overlap. The idea is to
create a more readable and visually appealing image. The
idea is to take the size of the nodes 𝑛1 and 𝑛2 into account
while computing the distance d(n1,n2) for both in repulsion
force and attraction force.
It is observed that when this mode is switched on the conver-
gence isn’t as smooth and the spatialization is considerably
slowed. It is important to keep in mind to apply this mode
after the convergence.

4.2 Yifan Hu
The Yifan Hu layout algorithm [10] combines the best features of
force-directed algorithms to minimize algorithm complexity. This
is one of the algorithms that perform admirably in large networks.
It is an extremely fast method that performs well on huge net-
works. To minimize complexity, it combines a force-directed model
with a graph coarsening approach. A Barnes-Hut [1] computation,
which considers them as one super-node, approximates the repul-
sive forces on one node from a cluster of distant nodes. The most
prominent parameters for the Yifan Hu algorithm include:

• Step ratio: A high ratio boosts quality at the expense of
speed

• Theta: A smaller Theta results in more accurate results but
takes more time

• Optimal distance: Controls distance between nodes

4.3 Yifan Hu Proportional
The Yifan Hu Proportional layout algorithm is identical to the
Yifan Hu layout algorithm, except that it utilizes a proportional
displacement strategy for node placement in the graphical space
instead of a proportional displacement strategy. The accuracy and
speed are virtually identical to the Yifan Hu algorithm.

4.4 OpenOrd
The OpenOrd algorithm [30] is one of the few force-directed layout
algorithms that can expand to more than one million nodes, making
it suitable for big networks. According to the authors of [30], it
is very quick, scales to millions of nodes can be run on multicore
processors, and aims to emphasize clusters. It anticipates undirected
weighted graphs and strives to distinguish clusters more effectively.
It may be run in parallel to speed up computation and automatically
shuts down. The method is based on Frutcherman-Reingold [7] and
operates with a predetermined number of regulated iterations. To
allow clusters to split, long edges are clipped. The most prominent
parameters for the OpenOrd algorithm include:

• Edge Cut: Higher values show more clustered results in the
networks

• Num Iterations: Higher values show more expanded re-
sults in the networks

5 DATA
To perform a proper analysis of our implementation, we aim to use
the dataset used by Jacomy et al. [11]. They employed a total of
68 different datasets, most of which come from the Stanford Large
Network Dataset Collection (referred to as SLND) [27]. We provide
a small definition of all the networks that they used;

• Facebook: 10 ego networks consisting of friends list from
Facebook, anonymized to maintain user safety [23, 31].

• Twitter: while the Twitter dataset from SLND contains a
total of 973 networks [24, 31], Jacomy et al. [11] only used 30
of those networks. They extracted the 10 "largest" networks,
the 10 "smallest" networks, and 10 "medium" sized networks,
the size criteria determined by the byte size of said network.

• Oregon-2: 9 autonomous systems graph, representing AS
peering information inferred from Oregon route-views [12,
25].

• COND-MAT: a collaboration network covering scientific
collaboration between authors’ papers submitted to the Con-
dense Matter category on arXiv [13, 26], covering the period
from January 1993 to April 2003. If an author i co-authored
a paper with author j, the graph contains an edge from i to
j. If the paper is co-authored by k authors this generates a
completely connected (sub)graph on k nodes.

• GR-QC: a collaboration network covering scientific collabo-
ration between authors’ papers submitted to the General Rel-
ativity and Quantum Cosmology category on arXiv [16, 26],
covering the period from January 1993 to April 2003. If an
author i co-authored a paper with author j, the graph con-
tains an edge from i to j. If the paper is co-authored by k
authors this generates a completely connected (sub)graph
on k nodes.

• HEP-PH: a collaboration network covering scientific col-
laboration between authors’ papers submitted to the High
Energy Physics - Phenomenology category on arXiv [19, 26],
covering the period from January 1993 to April 2003. If an
author i co-authored a paper with author j, the graph con-
tains an edge from i to j. If the paper is co-authored by k
authors this generates a completely connected (sub)graph
on k nodes.

• Karate: a social network of friendships between 34 members
of a university karate club [29, 39].

• Heroes Social Network: a network of Marvel superheroes,
collected by Cesc Rosselló, Ricardo Alberich, and Joe Miro
from the University of the Balearic Islands. The dataset was
then transformed and enhanced by Kai Chang.

• C-Elegans: a dataset representing the neural network of C.
Elegans [29, 38]. Note that this is a different dataset than the
C. Elegans dataset proposed by the SLDN, as the latter does
not have the same number of nodes and edges. The dataset
used in this paper is available through the Gephi dataset
repository, as are the Karate, Heroes and Yeast datasets [29].

• Yeast: a network consisting of protein-protein interaction
in yeast [3].

Additionally, we want to test the implementation on larger net-
works, as the biggest network presented by Jacomy et al. [11] was a
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network of 23,133 nodes and 186,936 edges. We extend this research
with the following datasets of larger networks:

• cit-HepPh: a citation graph covering all the citation within a
dataset of 34,546 papers on high energy physics phenomenol-
ogy submitted on arXiv [8, 20, 25]. If a paper i cites paper
j, the graph contains a directed edge from i to j. It does not
include citations outside the dataset.

• cit-HepTh: a citation graph covering all the citations within
a dataset of 34,546 papers on high energy physics theory
submitted on arXiv [8, 21, 25]. If a paper i cites paper j, the
graph contains a directed edge from i to j. It does not include
citations outside the dataset.

• Enron Email: a network covering all the email communica-
tions within a dataset of around half a million emails [14, 28].
Nodes of the network are email addresses and if an address
i sent at least one email to address j, the graph contains an
edge from i to j.

• Facebook page-page: represent a page-page network of
verified Facebook sites [15, 36]. Nodes represent Facebook
pages while edges represent mutual links between sites.

• Gnutella24: sequences of snapshots from the Gnutella peer-
to-peer file sharing system taken from August 24th, 2002
[17, 26].

• Gnutella25: sequences of snapshots from the Gnutella peer-
to-peer file sharing system taken from August 25th, 2002
[18, 26].

• math-overflow: four networks covering interactions on
the stack exchange website Math Overflow [22, 35]. The
temporal element is ignored. There are three different types
of interactions represented by a directed edge (u, v):
– user u answered user v’s question (in the graph sx-mathoverflow-
a2q)

– user u commented on user v’s question (in the graph sx-
mathoverflow-c2q)

– user u commented on user v’s answer (in the graph sx-
mathoverflow-c2a)

A detailed analysis of each network is provided in tables 1 and 2.
As with most datasets, each network had to be preprocessed and
cleaned before it could be fed into our benchmarking script. The
networks used did not all have the same format, which meant that
had to be reformated to the Graph Exchange XML Format (.GEXF)
before Gephi could use them. Most networks explained above used
adjacency lists to represent the connection between nodes. We were
able to extract the networks from those adjacency lists and save
them directly to the GEXF format by using the networkx python
package. This also enabled us to perform simple analysis to the
data before processing it, such as extracting the number of nodes
and edges, and computing the average degree of those networks.

6 EXPERIMENTS AND RESULTS
In the baseline research, Jacomy et al. [11] state that they random-
ized each network three times before benchmarking them but do
not explain how they were randomized. We decided to also ran-
domize each network, using Gephi’s built-in function to apply a
random layout to a network. Using this operation, we only need to
provide a grid size in which all nodes of a network will randomly

Dataset Nodes Edges Avg. Degree
facebook_ego_0 333 5,038 30.258
facebook_ego_107 1,034 53,498 103.478
facebook_ego_348 224 6,384 57.000
facebook_ego_414 150 3,386 45.147
facebook_ego_686 168 3,312 39.429
facebook_ego_698 61 540 17.705
facebook_ego_1684 786 28,048 71.369
facebook_ego_1912 747 60,050 160.776
facebook_ego_3437 534 9,626 36.052
facebook_ego_3980 52 292 11.231

twitter_small_ego_14711172 6 8 2.667
twitter_small_ego_15053535 18 26 2.889
twitter_small_ego_15924858 10 39 7.800
twitter_small_ego_22252971 23 34 2.957
twitter_small_ego_40777046 25 39 3.120
twitter_small_ego_43858661 11 37 6.727
twitter_small_ego_96545499 13 38 5.846
twitter_small_ego_98801140 5 5 2.000
twitter_small_ego_215328630 10 33 6.600
twitter_small_ego_396721965 9 21 4.667
twitter_med_ego_9254272 155 1,779 22.955
twitter_med_ego_9460682 88 2,003 45.523
twitter_med_ego_18481292 77 1,732 44.987
twitter_med_ego_19933035 62 1,632 52.645
twitter_med_ego_21420959 91 1,787 39.275
twitter_med_ego_22106463 156 1,815 23.269
twitter_med_ego_23503181 101 1,824 36.119
twitter_med_ego_26346966 78 1,928 49.436
twitter_med_ego_163374693 164 1,749 21.329
twitter_med_ego_430313102 51 1,646 64.549
twitter_big_ego_16987303 193 13,538 140.290
twitter_big_ego_24117694 246 9,630 78.293
twitter_big_ego_89826562 216 9,715 89.954
twitter_big_ego_175553601 201 8,888 88.438
twitter_big_ego_200214366 183 9,451 103.290
twitter_big_ego_217796457 184 12,105 131.576
twitter_big_ego_248883350 184 9,042 98.283
twitter_big_ego_256497288 213 17,930 168.357
twitter_big_ego_307458983 228 9,938 87.175
twitter_big_ego_314316607 235 15,957 135.804

oregon2_010331 10,900 31,180 5.721
oregon2_010407 10,981 30,855 5.620
oregon2_010414 11,019 31,761 5.765
oregon2_010421 11,080 31,538 5.693
oregon2_010428 11,113 31,434 5.657
oregon2_010505 11,157 30,943 5.547
oregon2_010512 11,260 31,303 5.560
oregon2_010519 11,375 32,287 5.677
oregon2_010526 11,461 32,730 5.712

arxiv_condensed_matter 23,133 93,497 8.083
arxiv_general_relativity 5,242 14,496 5.531

arxiv_high_energy_physics 12,008 118,521 19.740
zacharys_karate_club 34 78
marvel_super_heroes 10,469 178,115 34.027

c_elegans 306 2,345 7.663
yeast 2,361 7,182 6.084

Table 1: Benchmark datasets used by Jacomy et al. [11]
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Dataset Nodes Edges Avg. Degree
cit-HepPh 34,546 421,578 24.407
cit-HepTh 27,770 352,807 25.409
email-Enron 36,692 367,662 20.040

musae_facebook 22,470 171,002 15.220
p2p-Gnutella24 26,518 65,369 4.930
p2p-Gnutella25 22,687 54,705 4.823

sx-mathoverflow-a2q 21,688 90,489 8.345
sx-mathoverflow-c2a 13,840 81,121 11.723
sx-mathoverflow-c2q 16,836 101,329 12.037
sx-mathoverflow 24,818 239,978 19.339

Table 2: Additional Datasets Benchmarked

be placed. This led to a total of different 186 networks to benchmark.

Luckily for us, the Gephi framework already incorporated all the
algorithms that we planned to benchmark. We were able to use
Gephi Toolkit [9], a framework first released in 2010 (and since
updated along with Gephi releases) that incorporates the Gephi
modules in a standard Java library, bypassing the GUI and allowing
for the execution and automation of tasks through the command-
line.

Following the same principle as Jacomy et al. [11], we employed
Noack’s normalizedendv atedge inverted measure (7).

𝑄𝑁𝑜𝑎𝑐𝑘 (𝑝) =

∑
{𝑛1;𝑛2}∈𝐸

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝 (𝑛1 ),𝑝 (𝑛2 ) )

|𝐸 |∑
{𝑛1;𝑛2}∈𝑁 2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝 (𝑛1 ),𝑝 (𝑛2 ) )

|𝑁 2 |

(6)

𝑄 (𝑝) = 1
𝑄𝑁𝑜𝑎𝑐𝑘 (𝑝)

(7)

Similar to the baseline paper, we compute the layout quality at
"power of 2 plus 1" step until 2049. We ran each network on a ver-
sion of ForceAtlas2, ForceAtlas2 Linlog, OpenOrd, Yifan Hu and
Yifan Hu Proportional. This resulted in a total of 930 results.

The algorithms were benchmarked with the following settings,
inspired by settings employed by Jacomy et al. [11]:

• ForceAtlas2 (FA2): BarnesHutTheta 1.2; EdgeWeightInflu-
ence 1.0;Gravity 0.0; JitterTolerance 1.0; ScalingRatio 2.0;
AdjustSizes false; BarnesHutOptimize true; LinLogMode
false; OutboundAttractionDistribution false; StrongGrav-
ityMode false;

• ForceAtlas2 LinLog (FA2_LL): BarnesHutTheta 1.2; Edge-
WeightInfluence 1.0; Gravity 0.0; JitterTolerance 1.0; Scal-
ingRatio 2.0; AdjustSizes false; BarnesHutOptimize true;
LinLogMode true; OutboundAttractionDistribution false;
StrongGravityMode false;

• Yifan Hu (YH): BarnesHutTheta 1.2; ConvergenceThresh-
old 1.0e-4; InitialStep 20.797; OptimalDistance 103.985;
StepRatio 0.95; QuadTreeMaxLevel 10; RelativeStrength
0.2; AdaptiveCooling true;

• Yifan Hu Proportional (YH_P): BarnesHutTheta 1.2; Con-
vergenceThreshold 1.0e-4; InitialStep 20.797; OptimalDis-
tance 103.985; StepRatio 0.95; QuadTreeMaxLevel 10; Rel-
ativeStrength 0.2; AdaptiveCooling true;

• OpenOrd (OO): LiquidStage 25; ExpansionStage 25; Cooldown-
Stage 25; CrunchStage 10; SimmerStage 15; EdgeCut 0.8;

Upon reaching the results, we again followed the same approach
as Jacomy et al. We analyse each network to find the maximum
quality value, and two additional points: the Quick and Dirty point
and the Quasi-Optimal point. The Quick and Dirty point is reached
at 50% of maximum quality, and represents a rough estimation of
the specialization. The Quasi-Optimal point is reached at 90% of
the maximum quality, and should approximate a satisfying layout.
The plotting of said points can be viewed in Figure 4.

Looking at the overall results reported in Figure 1, we can see
that OO has the best average maximum quality over all the other
algorithms, by a long margin, with FA2_LL followed slightly behind
by FA2. We can see that FA2_LL, FA2, YH and YH_P have simi-
lar performance, but contrarily to the results obtained by Jacomy
et al, we observe that YH and YH_P both outperform FA2 on the
Quasi-Optimal measure, and outperform FA2 for the Quick and
Dirty measure.

We can see from Figure 2 each algorithm’s performance on each
network by plotting the quasi-optimal measure over the number
of nodes a network possesses. We find that for a majority of larger
networks, FA2_LL’s performance is very close to YH’s performance,
if not better.

In figure 3, we show the different algorithms yield a different lay-
out. And while we can more easily determine the clusters in the
smaller network (facebook_414), this is harder to view from the
other networks.

OOFA2_LLFA2

40746.05912.63142.1525Average Max
Quality

184478.9301111162.6827195042.6666Average Quick
and Dirty

161656.6075244964.6182327770.6881Average
Quasi-Optimal

YH_PYH

1.75691.7569

123990.3333118572.8118

194385.5483182830.7043

2.1525 2.6314 40746.05912.1525 2.6314

Figure 1: Benchmark Overall Results

The benchmark was run on an AMD Ryzen 5 3600 CPU and 16Gb
of 3200Mhz RAM. To enable the best reproducibility, the code can
be found in the project repository [37]1.
1https://github.com/ernestvmo/forceatlas2-SNACS

https://github.com/ernestvmo/forceatlas2-SNACS
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Figure 2: Quai-Optimal over Time

FA2_LL

FA2

OO

YH_P

YH
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Figure 3: Example of Different Layouts

7 CONCLUSION AND FUTUREWORK
In conclusion, we find the Noack measure 7 employed by Jacomy
et al to be a convenient measure to evaluate ForceAtlas2 variants
and Yifan Hu variants, but a very poor measure to evaluate the per-
formance of OpenOrd. Even tho OpenOrd ended up outperforming
all algorithms, its multiple-stage mechanism lead to inconsistent

measures during the benchmark. We also join in the opinion of Ja-
comy et al [11] that the measure fails to capture the clusters that are
visible in the visualized network, and a more sophisticated measure
should be investigated for future comparisons. We also find that the
performance of Gephi does not scale well the larger the network
gets, with averages of over an hour to benchmark a network of over
20,000 nodes on a single algorithm. This unfortunate disadvantage
will lead users to consider other frameworks such as GraphViz [5]
to visualize larger networks.
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Figure 4: Quick and Dirty and Quasi-Optimal points


	Abstract
	1 Introduction
	2 Problem Statement
	3 Related work
	4 Algorithms
	4.1 ForceAtlas2
	4.2 Yifan Hu
	4.3 Yifan Hu Proportional
	4.4 OpenOrd

	5 Data
	6 Experiments and Results
	7 Conclusion and Future Work
	References

